
Kubernetes 101
Tina Coleman

Docker (*)
● Isolated “containerized” process, with all of its dependencies

included
● Communications into container through explicitly exposed

ports, drive mappings, etc.
● Deployable across any Docker-supported environment -

build on dev box, deploy to prod environment
● (*) = Kubernetes aims to support other container runtimes,

in addition to Docker

“The Cloud”

● Multiple servers
● Do not have to be homogenous (specifications, platform,

operating system, …)
● Does not have to be static
● Examples: Amazon AWS, Microsoft Azure, Google Cloud

Platform, on-premises cluster

Orchestrating Containers

● How to get those docker images out on “the cloud”?
● When cloud nodes die, how to move those docker images

and their processing?
● If demand surges or collapses, can we use the machines

more efficiently?

Kubernetes

Kubernetes =
Docker + “the cloud” + orchestration

The so what:
● Predictable isolated processes
● Able to take advantage of full capacity of cloud
● In the cloud’s state today and as its load or available server

capacity changes
●

History

● Google develops Borg for use as in-house container
scheduler

● Project Seven == friendlier Borg (Star Trek reference)
● Seven becomes Kubernetes (k8s), announced in 2014
● Remember Pokemon Go?
● Now managed by Cloud Native Foundation
● Built into RedHat OpenShift, Rancher, CoreOS Tectonic, and

others
● Google Container Engine == SaaS implementation

Use by our customer

….

Key Concepts
Images credit to “The

Children’s Illustrated Guide to
Kubernetes”,

https://deis.com/blog/2016/
kubernetes-illustrated-guide/

Interacting
● Via a RESTful API

○ Directly
○ Kubectl

● Requires login, which grants a token
○ Users can be confined to certain namespaces, certain

operations, quotas, ...
● Always remote

○ “K8s, go use this docker container and give it this data and
mount in these files” - describe a desired state

○ K8s then makes it so or tells you it can’t

Playing Along

Getting Started

● Use someone’s existing cluster or hosted solution
○ Google Container Engine (GKE)
○ OpenShift.io
○ … (available clusters within work environment)

● Minikube (single machine instance)
● Kubeadm “to easily bring up a cluster with a single command per

machine”

Getting started - even easier

Do the Kubernetes tutorials at
https://kubernetes.io/docs/tutorials/

Minikube
● Instructions at https://github.com/kubernetes/minikube

○ Install VirtualBox (or other options)
○ Download installer: I used `brew cask install minikube`
○ This will also install kubectl, as well as the bash completions

for kubectl
● `minikube start`: now have a kubernetes “cluster”

running with kubectl configured to use it
● eval $(minikube docker-env)

○ Sets up Docker to interact with the daemon within your
minikube

○ Meaning, builds/lists your docker images based on its cache

https://github.com/kubernetes/minikube

Deploying an app

What the tutorials show you as the starting point:

kubectl run node-example --image=k8s-node-example:1.0
--port=8080

What happened?

Look at the results
1) kubectl get deployments: created a “deployment”

using the name given in the run
2) kubectl describe deployment node-example:

events include ‘scaled up replicaset’
3) kubectl get replicasets
4) kubectl get pods
5) kubectl describe pod ...

How it’s really usually done...
First, look at what k8s is trying to maintain:
kubectl get deployment node-example -o yaml

Now, look at deployment-example.yaml - declarative configuration

Tell k8s to use it:
kubectl create -f deployment-example.yaml --record

Expose that bit of code

Right now, it’s accessible within k8s network in your
“namespace”, but not external.

kubectl create -f service-name.yaml

Testing service selectors

kubectl get pods --show-labels

kubectl get pods -l 'app=tutorial-app'

kubectl get pods -l 'app!=tutorial-app'

Service oughta-knows

● The default type of service is ClusterIP: make me available
within the cluster

● Addressable via service-name: e.g. node-service:8080
● We used type: NodePort, which says, allocate a port on the

k8s cluster external fabric
○ kubectl get service node-example
○ Use indicated port on address of cluster

●

Let’s take a look at current state:
kubectl get pods -o wide -l 'app=tutorial-app'

Now, let’s add more pods:
kubectl scale deployment/node-deployment
--replicas=7

Scaling down works, too (skip for demo)
kubectl scale deployment/node-deployment
--replicas=0

Scaling up a deployment

New code… Updating a deployment
kubectl set image deployment/node-deployment
node=k8s-node-example:2.0

kubectl describe deployment node-deployment

kubectl get pods

kubectl logs …

Uh oh… Rolling back a deployment
kubectl rollout history deployment/node-deployment

kubectl rollout undo deployment/node-deployment

kubectl describe deployment node-deployment

 Check image version
 Check events

Ok, fix the issue

kubectl set image deployment/node-deployment
node=k8s-node-example:3.0

Things we didn’t
cover

More things to take advantage of...
Configuring pods

 ConfigMaps
 Secrets

Mounting data in via volumes, persistent volumes

Jobs, CronJobs

Node affinity (select compute nodes that meet right conditions)
…

Useful complementary tools

Helm - keep configuration information out of yaml; readily
deploy multiple clones

Kompose - convert docker-compose files to kubernetes
manifests

